Tabelle 8.	Abstände des	$H_2O(II)$ zu	seinen Nach	ıbarn im β-KZ	$nBr_3.2H_2Ou$	nd KZnJ.2H ₂ O
		4 - 1 - 7			J 2	

	β -KZnBr ₃ .2H ₂ O	$KZnJ_3.2H_2O$	
$H_2O(II) - X(1)$	3,63 Å	3,84 Å	
$H_2O(II) - X(2)$	3,54	3,77	1. Basis des trigonalen Prismas
$H_2O(II) - X(3)$	3,65	3,82	
$H_2O(II) - X(4)$	3,64	3,87	
$H_2O(II) - X(5)$	3,52	3,76	2. Basis des trigonalen Prismas
$H_2O(II) - X(6)$	3,81	3,81	
$H_2O(II) - X(7)$	3,53	3,72	
$H_2O(II)-H_2O(I)$	2,66	2,61	Pyramidenspitzen der Seitenflächen des Prismas
H ₂ O (II)–K	2,78	2,81	

Die Anordnung der Nachbarn um das H2O (II) ist entsprechend der um das Kalium.

Beide Strukturen lassen sich von einer verschiedenartig verzerrten hexagonal-dichtesten Brompackung ableiten. In beiden Fällen sind die Bromschichten sehr stark aufgeweitet und ineinanderverschachtelt (Fig. 3 und 4). Die Anordnung der so entstehenden Hohlkanäle ist in beiden Strukturen unterschiedlich; im α -KZnBr₃.2 H₂O verlaufen sie sämtlich in gleicher Orientierung, im β -KZnBr₃.2 H₂O sind sie jeweils um ihre Längsachsen gegeneinander verdreht.

Beide Strukturen haben das gleiche Volumen der Elementarzelle und in der Richtung der Hohlkanäle die gleiche Gitterkonstante. Die Atomabstände in beiden Modifikationen unterschieden sich nicht merklich. Auch der Schmelzpunkt ist etwa der gleiche.

Zwillingsbildung wurde beim β -KZnBr₃.2H₂O nicht beobachtet, dagegen tritt α -KZnBr₃.2H₂O nur in Zwillingsindividuen auf.

Beide Modifikationen von KZnBr₃.2H₂O kristallisieren in verschiedenen Kristallklassen und unterscheiden sich wesentlich in ihrem Habitus. β -KZnBr₃. 2H₂O kristallisiert prismatisch, wobei die Prismenrichtung der kürzesten Translationsrichtung (= c) entspricht. α -KZnBr₃.2H₂O bildet flache langgestreckte Scheiben mit der längsten Gitterkonstanten in Richtung der Längserstreckung.

Der Deutschen Forschungsgemeinschaft danken wir für die Unterstützung der vorliegenden Arbeit durch Sachbeihilfen. Dem Deutschen Rechenzentrum, Darmstadt, gebührt Dank für die Durchführung einer ganzen Reihe von Berechnungen vorwiegend mithilfe des X-ray-63 Program System for X-ray Crystallography (1964).

Literatur

BREHLER, B. (1960). Z. Kristallogr. 114, 66.

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- FOLLNER, H. & BREHLER, B. (1968). Acta Cryst. B24, 1339.
- KLUG, H. P. & ALEXANDER, L. (1944). J. Amer. Chem. Soc. 66, 1056.
- Отто, J. (1960). Z. Kristallogr. 114, 319.
- Süsse, P. & Brehler, B. (1963). Beitr. Min. Petrogr. 10, 132.
- X-ray 63 Program System for X-ray Crystallography (1964). Department of Chemistry, Univ. of Washington, Seattle and Univ. of Maryland, College Park.

Acta Cryst. (1970). B26, 1919

The Unit Cells and Space Groups of L-Methionine, $L-\beta$ -Phenylalanine, and DL-Tyrosine

BY B. KHAWAS

Division of Agricultural Physics, Indian Agricultural Research Institute, New Delhi, 12, India

(Received 5 May 1969 and in revised form 24 November 1969)

The Debye-Scherrer patterns of L-methionine, L- β -phenylalanine and DL-tyrosine crystallized from aqueous solution, have been analysed. L-Methionine (2-amino-4-methylthiobutanoic acid), is monoclinic with a=15.49, b=3.84, c=14.11 Å, $\beta=103^{\circ}54'$; space group $P2_1$, Z=4. L- β -Phenylalanine is also monoclinic with a=13.13, $b=6.59_4$, c=10.28 Å, $\beta=104^{\circ}38'$; space group $P2_1$, Z=4. DL-Tyrosine (3-*p*-hydroxyphenylalanine) is orthorhombic with a=21.26, $b=5.85_2$, c=13.68 Å; space group Pnc2, Z=8.

Although the crystal structures of DL-methionine dimorphs (Mathieson, 1952) and the unit cells and space group of DL- β -phenylalanine (Khawas & Krishna Murti, 1968) and L-tyrosine (Khawas & Krishna Murti, 1969) have been reported, there appear to be no data on the crystal structure of L-methionine, L- β -phenylalanine, and DL-tyrosine. These compounds could not be obtained as good single crystals by the ordinary methods of crystallization; information regarding the structure was obtained from powder patterns alone. L-Methionine crystallized from aqueous or alcoholic solution at room temperature $(25^{\circ}C-30^{\circ}C)$ does not show any dimorphism.

The patterns of the micro-crystals crushed to powder and rolled into the form of a cylinder (about 0.3 mm in diameter) with gum acaciae, were taken on an 11.48 cm diameter powder camera using Cu K α radiation. The positions of the lines were measured to an accuracy of 0.05 mm, and the spacings obtained were accurate to 0.001 Å for 2θ -62°. The *d* values were converted to Q (10⁴ . 1/*d*²), and a table of differences in Q values was prepared for each sample.

L-Methionine

Pure L-methionine, obtained from British Drug Houses Ltd, England, was crystallized from aqueous solution; the crystals are tiny, transparent and not very regular in shape. An application of the tests for higher symmetries (Azároff & Buerger, 1958), on the experimental Q values from a powder photograph (Table 1) showed that the crystal system was not cubic, tetragonal, hexagonal, or orthorhombic. Ito's (1950) method was then tried using the general formula:

$$Q_{hkl} = h^2 a^{*2} + k^2 b^{*2} + l^2 c^{*2} + 2hka^* b^* \cos \gamma^* + 2hl^* a^* c^* \cos \beta^* + 2kl b^* c^* \cos \alpha^* .$$
(1)

 Table 1. Powder pattern data of L-methionine

 0.00011100

		$Q(10^4, 1/d^2)$	
Intensity	d	Observed culated	hkl
DS .	15·24 Å	43 44	100
vvw	13.60	54 52	001
w	7.628	172 177	200
<i>vw</i>	5.733	304 297	102
S	4.995	401 398	300
vw	4.769	440 441	103
		(466	003
vw	4.623	468 { 467	302
		476	202
vs	4.449	505 505	203
S	4.366	525 519	301
s (bd.)	4.114	591 579	103
	2.076	657	303
<i>vs</i> (ba.)	3.8/0	000 { 667	40 <u>T</u>
w	3.693	733 730	40 <u>2</u> , 011
m.	3.485	823 ∫ 822	204
	5 105	(829	004
<i>m</i> (bd.)	3.334	900 897	403
5	3.106	1037 1042	501
		1071	303
m	3.044	1079 { 1076	310
		[1082	502
<i>m</i> (bd.)	2.880	1206 1197	311
		1335	313
\$	2.730	1342 { 1345	411
		[1348	305
m	2.655	1419 1421	312
		1500	214
5	2.578	1505 1503	304
5	2010	1505	601
		[1507	014
m	2.508	1590 1591	600
vw	2.419	1709 1702	205
m	2.386	1757 1749	313
	1 JUU	1760	512

			,	
		Q (10	$\frac{4.1}{d^2}$	
Intensity	d	Observed	i culated	hkl
<i>m</i> (bd.)	2.318	1861	{ 1865 1868	006 214, $60\overline{4}$
vvw	2.222	2025	2020	406 315
m	2.149	2165	2163	61 <u>1</u> 700
w	2.080	2311	2318	206
W	2.023	2443	. 2449	116
vw	1.985	2538	{ 2538 2543	007 016
w (bd.)	1.921	2710	2712	020
w	1.796	3100	{ 3093 } 3099	$32\overline{1}$ $11\overline{7}$
w	1.757	3239	3231	321
UUW	1.693	3489	3493	$223, 12\overline{4}$
W	1.650	3673	3677	124
vvw	1.595	3931	3936	125
vvw	1.550	4162	4166	125
vw	1.519	4334	4329	10, 0, 4
vvw	1.486	4529	4537	525
vvw	1.445	4785	4787	209
vvw	1.403	5080	{ 5072 { 5087	814 10, 0, 2

Table 1 (cont.)

Assuming the first two lines to have indices 100 and 001, $Q_{100} = 44.2$ and $Q_{001} = 51.8$ were computed respectively from the observed pairs $Q_{600} = 1591$, $Q_{700} =$ 2165 and $Q_{006} = 1861$, $Q_{007} = 2538$. With these values of Q_{100} and Q_{001} on substitution in formula (1), other pinacoidal reflexions for h=2, 3 and l=3, 4 could be found. If the third line is assumed to be the second order of the first, and the 4th line to have index 102, the above formula gave $2hla^*c^*\cos\beta^*=23$ computed from observed $Q_{20\bar{4}}=823$. Taking these three parameters the first 16 lines and a few of the rest could be indexed for hol zone. Next $Q_{010} = 678$ was computed from $Q_{020} = 2710$, so that from $Q_{50\bar{2}} = 1079$, the 23rd line could be indexed as $51\overline{2}$ for $Q_{obs} = Q_{calc} = 1757$, giving $\alpha^* = 90 = \gamma^*$ from the above formula. All the lines in the pattern were now indexed, using these 6 constants, within the discrepancy $|Q_{obs} - Q_{calc}| = 8$, for sharp lines; the following constants followed for the reciprocal unit cell $a^* = 0.0648$, $b^* = 0.2598$, $c^* =$ $0.07198 \text{ Å}, \beta^* = 76^{\circ}6'.$

De Wolff (1968) has propounded a simplified criterion for the reliability of an indexed pattern, in the form of a figure of merit, defined by

$$M_{20} = Q_{20}/2\tilde{\varepsilon}N_{20} \tag{2}$$

where Q_{20} = the Q value for 20th observed and indexed line,

- N_{20} = the number of different Q values calculated up to Q_{20}
 - $\tilde{\varepsilon}$ = the average discrepancy in Q for these 20 lines.

This should have a value greater than 10 for correct indexing of a powder pattern. For L-methionine (Table 1), $Q_{20}=1505$, $N_{20}=31$, and $\tilde{\varepsilon}=3\cdot3$, so $M_{20}=7\cdot30$.

Thus the indexing of the pattern of L-methionine can be taken as correct.

The direct cell derived from the above reciprocal parameters has: a = 15.49, b = 3.84, c = 14.11 Å, $\beta = 103^{\circ}$ 54'; which Buerger's (1957) test shows to be the reduced cell. The observed density 1.22 g.cm⁻³, measured to an accuracy of 0.005 g.cm⁻³ gave the number of molecules per unit cell as 4.0. The lines in the pattern were given all possible indices, within the above discrepancy, and the following conditions limiting possible reflexions were found:

hkl, no condition *h*0*l*, no condition .

0k0, k = 2n (only three orders were in the range of observation). The probable space group is thus $P2_1$ or $P2_1/m$, the former being chosen for an optically active molecule, which is asymmetric.

$L-\beta$ -Phenylalanine

Pure L- β -phenylalanine, obtained from British Drug Houses Ltd, England, was crystallized from aqueous solution by repeated evaporation at room temperature. X-ray patterns of the powdered microcrystalline mass were taken. Tests for the higher symmetries (Azároff & Buerger, 1958) over the observed Q values (Table 2) for a cubic, tetragonal, hexagonal or an orthorhombic cell were negative. The pattern could be analysed satisfactorily by Ito's (1950) method for a monoclinic cell as described earlier in the case of L-methionine. The first three lines were given indices 100, 001, and 101 and $Q_{100} = 62$, $Q_{001} = 101$ could be computed from observed $Q_{400} = 991$, $Q_{600} = 2238$, and $Q_{30\overline{2}} = 722$, $Q_{20\overline{4}}$ = 1543, giving the factor $2a^*c^*\cos\beta^* = 40$. With these three constants, using formula (1), the 4th, 5th and 6th line were identified as 101, 200, and 201. Next $Q_{010} = 230$ was taken from observed $Q_{41\bar{3}} = 1650$, Q_{031} =2171, giving $\alpha^* = 90^\circ = \gamma^*$. The reciprocal cell constants, derived from the above six parameters are: $a^* =$ 0.07874, $b^* = 0.1517$, $c^* = 0.1005$ Å, $\beta^* = 75^{\circ}22'$ with which all the lines in the pattern could be indexed satisfactorily, within discrepancy $|Q_{obs} - Q_{calc}| = 8$, except the third and seventh line, which had discrepancies 10 and 12 respectively.

Following de Wolff (1968), from Table 2, $Q_{20} = 1209$, $X_{20} = 1$, $N_{20} = 21$; $\tilde{\epsilon} = 4.25$ and M_{20} calculated from formula (2) is 6.76. The indexing of the pattern of L- β -phenylalanine is thus correct. The direct cell dimensions are a = 13.13, $b = 6.59_4$, c = 10.28 Å, $\beta = 104^{\circ}38'$, which after Buerger's (1957) method are found reduced and correspond to the primitive unit cell. The observed density is 1.28 g.cm⁻³ and density calculated for Z = 4, is 1.27 g.cm⁻³.

The lines in the pattern were given all possible indices (Table 2) within the above discrepancy and the conditions limiting possible reflexions are:

hkl, no condition *h*0*l*, no condition

Table 2. Powder pattern data of L-β-phenylalanine

		Q (104	$(1/d^2)$	
Intensity	d	Observed	culated	hkl
LS .	13.60 Å	54	62	100
s	10.35	93	101	001
m	8.672	133	123	101
т	6.972	206	203	101
vs	6.414	243	248	200
т	6.027	275	269	201
UW	5.733	304	292 (?)	110 (?)
S	5.451	336	331	011
vs	5.111	383	386	102
S	4.598	473	478	210
US .	4.323	535	539	30 <u>T</u>
w	4·218	562	558	300
\$	4.023	618	616	112
S	3.900	657	659	211
vw (bd.)	3.722	722	722	212, 302
S	3.514	810	812	202
vs	3.433	849	851	103
S	3.296	927	{ 920 } 933	40T 020
vw	3.177	991	992	400
<i>vw</i>	2.950	1149	1147	213
w	2.876	1209	1202	302
vvw	2.827	1251	1253	401
vs	2.750	1322	1324	022
w	2.683	1389	1397	203
vw	2.632	1444	1451	501
w	2.546	1543	{ 1542 1550	20 4
			1642	327
vw	2.462	1650	1651	413
т	2.344	1820	1827	303
w	2.265	1949	1946	412
т	2.146	2171	2171	031
vw	2.114	2238	2232	600
vvw	2.006	2485	2483	305
vvw	1.971	2574	2573	601
vvw	1.943	2649	2654	304
vw	1.908	2741	2747	323
vw	1.831	2983	2979	033
vvw	1.782	3149	3152	620
vvw	1.754	3250	3248	404

0k0, k=2n (only three orders were in the range of observation). The probable space group is $P2_1$ or $P2_1/m$. The former is assigned for the same reason as for L-methionine.

DL-Tyrosine

Pure DL-tyrosine was obtained from Sigma Chemical Co., St. Louis, U.S.A. It crystallizes from aqueous solution in very fine short needles, unlike L-tyrosine where these needles were longer and a fibre diagram (Khawas & Krishna Murti, 1969) about the needle axis could be taken. X-ray patterns of the powdered crystals were taken. An application of the tests of higher symmetries (Azároff & Buerger, 1958) to the observed Q values (Table 3) showed that the crystal system was not cubic, tetragonal, or hexagonal but a number of constant ΔQ values were observed, which suggested that crystal system might be orthorhombic. The Q values were multiplied by $\lambda^2/4$ to get corresponding $\sin^2 \theta$ values (Table 3), and the pattern was analysed by Lipson's (1949) method, giving the fol-

lowing constants for a satisfactory indexing of all observed lines, where $\lambda = 1.5418$ Å.

> $\sin^2 \theta_{100} = 13.14$ $\sin^2 \theta_{010} = 173.6$ $\sin^2 \theta_{001} = 31.8$

Table 3. Powder pattern data of DL-tyrosine

 $10^4 \sin^2\theta$

	_		Cal-		UW	1.418
Intensity	d	Observed	culated	hkl		
nw	10∙60 Å	53	53	200		
5	6.510	140	140	102	UW	1.380
115	5.733	181	180	202		
5	5.294	212	210	400	UW	1.329
5	4.803	248	245	302		1.209
03	4.073	240	240	302	w	1.200
US	4.473	297	292	310		1.00
US	4.124	349	333	212	W	1.28
S	3.917	387	384	410		
m	3.761	419	416	411		1 337 10
	5 701	117	420	312	To apply	de Wolf
<i>vs</i>	3.576	465	460	013	(• • • •	001
			509	004	$(\sin^2\theta)_{20}$	=996, th
vs	3.408	512	511	412		indexed
			512	213	N.	-25 the
US	3.243	565	561	204	1 20	-23, the
			627	304		calcula
<i>vs</i> (bd.)	3.084	625	629	512	ĩ	=2.3, the
			604	020	-	volues
vs	2.927	694 <	606	114		values,
	0.040	7 22	090	114	and M_{20}	=8·70 ca
m	2.849	/32	/35	214		
vs	2.730	797	801	314	This sho	ws that t
S	2.639	853	849	711	The unit	t cell de
w	2.578	894	893	414	12 60 %	
m	2.528	930	932	613	13.08 A.	Assumi
m	2•442	996	994	123	1.41 g.cn	1 ⁻³ and o
	3 407	1027	f 1021	215	All the	nossible
S	2.407	1027	1023	520	a diaman	possion
s (bd.)	2.254	1169	1166	620	a discrep	ancy of
m	2.189	1241	1238	910	the condi	tions lim
m	2.126	1314	1314		are	
	2 120	1514	(1355	10, 0, 0	ui vi	
S	2.091	1359 -	1265	012		
			1100	216		
m	2.034	1436	1430	510		
			1441	015; 10, 0, 2		
5	1.977	1521	Į 1519	10, 1, 1		
5			[1523	814		
w	1.937	1584	1590	11, 0, 0	The prob	able space
5	1.893	1659	1663	822	in anian	d for or
	1.962	1712	∫ 1712	331	is assigne	a for an
w	1.902	1/12	1717	11, 2, 0		
			1784	217	The a	thor is p
<i>DW</i>	1.824	1786	1789	706	D-M C	Currane i
• .,			1790	616: 921	Dr M. S	. Swamn
1110	1.777	1882	1886	922	work.	
111147	1.749	1943	1943	417		
0011	1 /4/	1745	(2035	008		
VW	1.708	2037	2033	620		
		•	2034	12 1 1	Azároff.	L. V. 8
UW	1.684	2095	1 2098	12, 1, 1	Method	118_123
			2099	11, 0, 4	Durnorp	M T (10
\$	1.660	2157	2153	308	DUERGER,	1 1 1 1 1 1 1 1 1 1
5	1 000	2107	2159	816	Іто, Т. (І	950). X-ra
S	1.625	2251	2245	408	Tokyo:	Maruzer
	1 500	2225	∫ 2327	328	KHAWAS.	B. & KI
m	1.222	2323	2330	825	I Phys	42 165
	1 5 60	0414	2410	235	J. 1 HYS	D 9 T
vvw	1.269	2414	1 2412	418:11.2.2	KHAWAS,	D. & KRI
w	1.546	2486	2483	726	B25, 10	JU6.
, r	1 540	2700	(2536	518	Lipson, H	I. (1949) .
vvw	1.530	2539	25/2	634	MATHIESO	N.A.M
	1.492	2702	2702	14 0 2	WOIEF E	M DE (
m	1.402	2702	2703	14, 0, 2	WOLFF, F	. INI. DE (

	Т	Table 3 (co	nt.)	
		104 s	$\sin^2\theta$	
			Cal-	
Intensity	d	Observed	culated	hkl
m	1.456	2803	{ 2802 2803	219
			2903	926; 13, 1, 4
vw	1.430	2906	2905	042 11, 1, 6
			2912	834 15 0 0
UW	1.418	2956	2957	242
UW	1.380	3121	{ 2960 { 3116	419 243
	1.320	3365	∫ 3121 ∫ 3364	037 16, 0, 0
UW	1.329	3305	3365	13, 0, 6
w	1.308	3473	3472	3, 1, 10 145
w	1.287	3588	3590 3593	819 637

f's (1968) test, we can write

- e sin² θ value for 20th observed and 1 line.
 - number of different sin $^{2}\theta$ values ted up to $(\sin^2 \theta)_{20}$
 - e average discrepancy in $\sin^2 \theta$
- lculated from formula (2).

the indexing is substantially correct. erived has a = 21.26, b = 5.852, c =ng Z=8, the density calculated is bserved density is 1.37 g.cm⁻³.

indices for each observed line within $|\sin^2 \theta_{obs} - \sin^2 \theta_{calc}| = 6$, were given. iting possible reflexions from Table 3

hkl, no condition
h0l, 1=2n
0kl, k+l=2n
hk0, no condition.

ce group is Pnc2 or Pncm. The former organic molecule.

rateful to Dr C. Dakshinamurti and nathan for their kind interest in the

References

& BUERGER, M. J. (1958). The Powder . New York: McGraw-Hill.

- 957), Z. Kristallogr. 109, 42–60.
- y Studies On Polymorphism. p. 157-228. Co. Ltd.
- RISHNA MURTI, G. S. R. (1968). Indian
- SHNA MURTI, G. S. R. (1969). Acta Cryst.
- Acta Cryst. 2, 43.

1968). J. Appl. Cryst. 1, 108.

^{(1952).} Acta Cryst. 5, 332.